
Threads

Threads
Thread is an execution unit that consists of its own program counter, a stack, and a set
of registers. Threads are also known as Lightweight processes. Threads are a popular
way to improve the application through parallelism. The CPU switches rapidly back and
forth among the threads giving the illusion that the threads are running in parallel. As
each thread has its own independent resource for process execution, multiple
processes can be executed parallelly by increasing the number of threads.

Types of Thread

● User threads are above the kernel and without kernel support. These are the
threads that application programmers use in their programs.

● Kernel threads are supported within the kernel of the OS itself. All modern OSs
support kernel-level threads, allowing the kernel to perform multiple
simultaneous tasks and/or to service multiple kernel system calls simultaneously.

Program vs Process vs Thread

Program Process Thread

An execution file stored
in harddrive.

An execution file stored
in
memory.

An execution path of
part of the process.

Program contains in the
instruction.

A process is a sequence
of instruction.

Thread is a single
sequence stream within
a process.

One Program contains
many processes.

One Process can contain
several threads.

One thread can belong to
exactly one process.

1



Multithreading
Multithreading is a phenomenon of executing multiple threads at the same time. For
example, in a browser, multiple tabs can be different threads. MS Word uses multiple
threads: one thread to format the text, another thread to process inputs, etc.

Single threaded Process Multithreaded Process

Multithreading Models

The user threads must be mapped to kernel threads, by one of the following strategies:

Many to One Model
As the name suggests there is a many to one relationship between threads. Here,
multiple user threads are associated or mapped with one kernel thread. The thread
management is done on the user level so it is more efficient.

Example: Initial implementation of Java threads on the Solaris system

2



One to One Model
The one-to-one model creates a separate kernel thread to handle each and every user
thread. Most implementations of this model place a limit on how many threads can be
created. Linux and Windows from 95 to XP implement the one-to-one model for
threads.

Example: Windows NT and the OS/2 threads package

3



Many to Many Model

The many to many model multiplexes any number of user threads onto an equal or
smaller number of kernel threads, combining the best features of the one-to-one and
many-to-one models. Blocking the kernel system calls does not block the entire process.

Many to Many Model

Example: Implementation of Java on an MT operating system.

4


