

Priority Scheduling

- CPU is allocated to the particular process with the highest priority .
- Priority range be 0 to 7 (say), with 0 representing the highest or the lowest priority
- Priority may depend on internal factors (time limit, memory requirement, number of open files, etc.) and external factors (user, department, etc.)
- May be preemptive or non-preemptive .
- SJF is an important case of priority scheduling, with priority inversely proportional to predicted next CPU burst length.
- May cause starvation, i.e. indefinite blocking of processes
- Aging: gradually increase the priority of a process waiting for a long time
- Priority inversion: a low-priority process gets the priority of a high-priority process waiting for it

Example:

Process	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

Gantt chart:

AWT = 8.2 mS

Problem with priority scheduling algorithms is indefinite blocking or starvation. A solution to the problem of indefinite blockage of low priority processes is aging. Aging is a technique of gradually increasing the priority of processes that wait in the system for a long time. For example if priorities range from 0 (low) to 127 (high), we could increment the priority of a waiting process by 1 every 15 mins.

User Problems:

Problem 1:

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time	Priority
P1	0	4	2
P2	1	3	3
P3	2	1	4
P4	3	5	5
P5	4	2	5

If the CPU scheduling policy is priority preemptive, calculate the average waiting time and average turnaround time. (Higher number represents higher priority)

Solution-

Gantt Chart-

Gantt Chart

Now, we know-

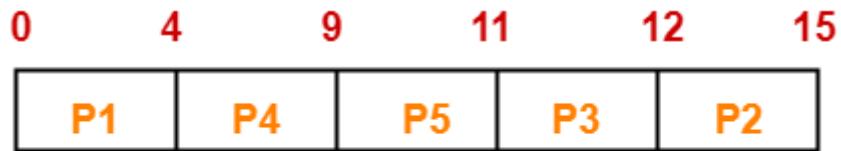
- Turn Around time = Exit time – Arrival time
- Waiting time = Turnaround time – Burst time

Process Id	Exit time	Turn Around time	Waiting time

P1	15	$15 - 0 = 15$	$15 - 4 = 11$
P2	12	$12 - 1 = 11$	$11 - 3 = 8$
P3	3	$3 - 2 = 1$	$1 - 1 = 0$
P4	8	$8 - 3 = 5$	$5 - 5 = 0$
P5	10	$10 - 4 = 6$	$6 - 2 = 4$

Now,

- Average Turnaround time = $(15 + 11 + 1 + 5 + 6) / 5 = 38 / 5 = 7.6$ unit
- Average waiting time = $(11 + 8 + 0 + 0 + 4) / 5 = 23 / 5 = 4.6$ unit


Problem 2:

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time	Priority
P1	0	4	2
P2	1	3	3
P3	2	1	4
P4	3	5	5
P5	4	2	5

If the CPU scheduling policy is priority non-preemptive, calculate the average waiting time and average turnaround time. (Higher number represents higher priority)

Solution-

Gantt Chart

Now, we know-

- Turn Around time = Exit time – Arrival time
- Waiting time = Turnaround time – Burst time

Process Id	Exit time	Turn Around time	Waiting time
P1	4	$4 - 0 = 4$	$4 - 4 = 0$
P2	15	$15 - 1 = 14$	$14 - 3 = 11$
P3	12	$12 - 2 = 10$	$10 - 1 = 9$
P4	9	$9 - 3 = 6$	$6 - 5 = 1$
P5	11	$11 - 4 = 7$	$7 - 2 = 5$

Now,

- Average Turnaround time = $(4 + 14 + 10 + 6 + 7) / 5 = 41 / 5 = 8.2$ unit
- Average waiting time = $(0 + 11 + 9 + 1 + 5) / 5 = 26 / 5 = 5.2$ unit